Skip to content

llmtranslate

Test Python package - Publish Docs PyPI version License: MIT codecov Downloads

Overview

llmtranslate is a Python library designed to identify the language of a given text and translate text between multiple languages using OpenAI's GPT-4o. The library is especially useful for translating text containing multiple languages into a single target language.

Features

  • Language Detection: Identify the language of a given text in ISO 639-1 format.
  • Translation: Translate text containing multiple languages into another language in ISO 639-1 format.

Documentation

Comprehensive documentation, including detailed usage information, is available at https://llm-translate.com

Requirements

To use this library, you must have an OpenAI API key. This key allows the library to utilize OpenAI's GPT-4o for translation and language detection.

Installation

You can install the llmtranslate library from PyPI:

pip install llmtranslate

Usage

Setting the OpenAI API Key

Before using llmtranslate with OpenAI, you need to set your OpenAI API key. You can do this by creating an instance of the TranslatorOpenAI class.

from llmtranslate import TranslatorOpenAI

# Set your OpenAI API key
translator = TranslatorOpenAI(api_key="YOUR_OPENAI_API_KEY", model="gpt-4o-mini")

Language Detection

To detect the language of a given text:

from llmtranslate import TranslatorOpenAI

# Set your OpenAI API key
translator = TranslatorOpenAI(api_key="YOUR_OPENAI_API_KEY", model="gpt-4o-mini")

# Detect language
detected_language = translator.get_text_language("Hello world")
if detected_language is not None:
    print(detected_language.ISO_639_1_code)  # Output: 'en'
    print(detected_language.ISO_639_2_code)  # Output: 'eng'
    print(detected_language.ISO_639_3_code)  # Output: 'eng'
    print(detected_language.language_name)  # Output: 'English'

Warning

If the translator does not detect any language, it will return None.
Before using results of translator detection you should check if it returned correct result or None

Translation

To translate text containing multiple languages into another language, you need to provide the ISO 639 language code for the target language. For a list of all ISO 639 language codes, you can refer to this ISO 639-1 code list website.

from llmtranslate import TranslatorOpenAI

# Set your OpenAI API key
translator = TranslatorOpenAI(api_key="YOUR_OPENAI_API_KEY", model="gpt-4o-mini")

# Translate text
translated_text = translator.translate(
    text="Cześć jak się masz? Meu nome é Adam", 
    to_language="en"  # Use ISO 639-1 code for the target language
)
print(translated_text)  # Output: "Hello how are you? My name is Adam"

Full Example

Here is a complete example demonstrating how to use the library:

from llmtranslate import TranslatorOpenAI

# Initialize the translator with your OpenAI API key
translator = TranslatorOpenAI(api_key="YOUR_OPENAI_API_KEY", model="gpt-4o-mini")

# Detect language
detected_language = translator.get_text_language("jak ty się nazywasz")
if detected_language is not None:
    print(detected_language.ISO_639_1_code)  # Output: 'pl'
    print(detected_language.ISO_639_2_code)  # Output: 'pol'
    print(detected_language.ISO_639_3_code)  # Output: 'pol'
    print(detected_language.language_name)  # Output 'Polish'

# Translate text
translated_text = translator.translate(
    text="Cześć jak się masz? Meu nome é Adam", 
    to_language="en"
)
print(translated_text)  # Output: "Hello how are you? My name is Adam"

Available OpenAI Models for Translation

The llmtranslate library provides access to various OpenAI models for translation. Below are the supported models and their use cases:

from llmtranslate import TranslatorOpenAI

# Recommended for precise translation, high-precision model
translator = TranslatorOpenAI(api_key="YOUR_OPENAI_API_KEY", model="gpt-4o")

# A budget-friendly option, balancing cost and quality
translator = TranslatorOpenAI(api_key="YOUR_OPENAI_API_KEY", model="gpt-4o-mini")

Using Asynchronous Methods

The llmtranslate library provides asynchronous methods to allow you to perform language detection and translation tasks efficiently in an async environment. If your application uses asyncio or another asynchronous framework, you can take full advantage of these async methods to avoid blocking your program while waiting for language detection or translation tasks to complete.

Example of Using Asynchronous Methods

The following example demonstrates how to use the async_get_text_language and async_translate_text methods:

import asyncio
from llmtranslate import TranslatorOpenAI

# Initialize the translator with your OpenAI API key
translator = TranslatorOpenAI(api_key="YOUR_OPENAI_API_KEY", model="gpt-4o-mini")


# Async function to detect language and translate text
async def detect_and_translate():
    # Detect language asynchronously
    detected_language = await translator.async_get_text_language("Hola, ¿cómo estás?")
    if detected_language is not None:
        print(detected_language.ISO_639_1_code)  # Output: 'es'
        print(detected_language.language_name)  # Output: 'Spanish'

    # Translate text asynchronously
    translated_text = await translator.async_translate(
        text="Cześć jak się masz? Meu nome é Adam",
        to_language="en"  # Use ISO 639-1 code for the target language
    )
    print(translated_text)  # Output: "Hello how are you? My name is Adam"


# Run the async function
asyncio.run(detect_and_translate())

Key Asynchronous Methods

  1. async_get_text_language(text: str): This method detects the language of the provided text asynchronously.
  2. Parameters:
    • text: The input text whose language needs to be detected.
  3. Returns: A TextLanguage object containing the detected language's ISO 639-1, ISO 639-2, ISO 639-3 codes, and the language name.

Example:

detected_language = await translator.async_get_text_language("Hallo, wie geht's?")

  1. async_translate_text(text: str, to_language: str): This method translates the input text asynchronously to the specified target language.
  2. Parameters:
    • text: The input text to be translated.
    • to_language: The target language in ISO 639-1 code.
  3. Returns: A string containing the translated text.

Example:

translated_text = await translator.async_translate("Bonjour tout le monde", "en")

Why Use Asynchronous Methods?

Using asynchronous methods allows your application to handle multiple tasks concurrently, improving efficiency, especially when dealing with large amounts of text or performing multiple translations simultaneously. This non-blocking behavior is ideal for web services, APIs, and any scenario requiring high responsiveness.

Running Asynchronous Functions

Remember that asynchronous methods must be called within an async function. To execute them, you can use asyncio.run() as shown in the examples above.

Setting the Azure OpenAI API Key

If you are using Azure's OpenAI services, you need to set your Azure OpenAI API key along with additional required parameters. Use the TranslatorAzureOpenAI class for this.

from llmtranslate import TranslatorAzureOpenAI

# Set your Azure OpenAI API key and related parameters
translator = TranslatorAzureOpenAI(
  azure_endpoint="YOUR_AZURE_ENDPOINT",
  api_key="YOUR_AZURE_API_KEY",
  api_version="YOUR_API_VERSION",
  azure_deployment="YOUR_AZURE_DEPLOYMENT"
)

Supported Languages

llmtranslate supports all languages supported by GPT-4o. For a complete list of language codes, you can visit the ISO 639-1 website.

Here is a table showing which languages are supported by gpt-4o and gpt4o-mini:

Language Name Language Code Supported by gpt-4o Supported by gpt4o-mini
English en Yes Yes
Mandarin Chinese zh Yes Yes
Hindi hi Yes Yes
Spanish es Yes Yes
French fr Yes Yes
German de Yes Yes
Russian ru Yes Yes
Arabic ar Yes Yes
Italian it Yes Yes
Korean ko Yes Yes
Punjabi pa Yes Yes
Bengali bn Yes Yes
Portuguese pt Yes Yes
Indonesian id Yes Yes
Urdu ur Yes Yes
Persian (Farsi) fa Yes Yes
Vietnamese vi Yes Yes
Polish pl Yes Yes
Samoan sm Yes Yes
Thai th Yes Yes
Ukrainian uk Yes Yes
Turkish tr Yes Yes
Maori mi No No
Norwegian no Yes Yes
Dutch nl Yes Yes
Greek el Yes Yes
Romanian ro Yes Yes
Swahili sw Yes Yes
Hungarian hu Yes Yes
Hebrew he Yes Yes
Swedish sv Yes Yes
Czech cs Yes Yes
Finnish fi Yes Yes
Amharic am No No
Tagalog tl Yes Yes
Burmese my Yes Yes
Tamil ta Yes Yes
Kannada kn Yes Yes
Pashto ps Yes Yes
Yoruba yo Yes Yes
Malay ms Yes Yes
Haitian Creole ht Yes Yes
Nepali ne Yes Yes
Sinhala si Yes Yes
Catalan ca Yes Yes
Malagasy mg Yes Yes
Latvian lv Yes Yes
Lithuanian lt Yes Yes
Estonian et Yes Yes
Somali so Yes Yes
Tigrinya ti No No
Breton br No No
Fijian fj Yes No
Maltese mt Yes Yes
Corsican co Yes Yes
Luxembourgish lb Yes Yes
Occitan oc Yes Yes
Welsh cy Yes Yes
Albanian sq Yes Yes
Macedonian mk Yes Yes
Icelandic is Yes Yes
Slovenian sl Yes Yes
Galician gl Yes Yes
Basque eu Yes Yes
Azerbaijani az Yes Yes
Uzbek uz Yes Yes
Kazakh kk Yes Yes
Mongolian mn Yes Yes
Tibetan bo No No
Khmer km Yes No
Lao lo Yes Yes
Telugu te Yes Yes
Marathi mr Yes Yes
Chichewa ny Yes Yes
Esperanto eo Yes Yes
Kurdish ku No No
Tajik tg Yes Yes
Xhosa xh Yes No
Yiddish yi Yes Yes
Zulu zu Yes Yes
Sundanese su Yes Yes
Tatar tt Yes Yes
Quechua qu No No
Uighur ug No No
Wolof wo No No
Tswana tn Yes Yes

Additional Resources

Authors

License

llmtranslate is licensed under the MIT License. See the LICENSE file for more details.